domenica 1 giugno 2014

EDUCAZIONE ALIMENTARE:LE PROTEINE

Le proteine (o protidi) sono macromolecole biologiche formate da una o più catene amminoacidiche. In analogia con altre macromolecolebiologiche come i polisaccaridi e gli acidi nucleici, le proteine costituiscono una parte essenziale degli organismi viventi. Molte fanno parte della categoria degli enzimi, la cui funzione è catalizzare le reazioni biochimiche vitali per il metabolismo degli organismi. Alcune hanno funzioni strutturali e meccaniche, come l'actina e la miosina nei muscoli, il collagene in ossa e tessuti, e come componenti del citoscheletrocellulare. Altre proteine sono importanti mediatori nella trasmissione di segnali inter ed intracellulari, nella risposta immunitaria, nei meccanismi di adesione cellulare nel ciclo di divisione cellulare.
Le proteine si differenziano principalmente per la sequenza degli amminoacidi che le compongono, la quale a sua volta dipende dallasequenza nucleotidica dei geni che all'interno della cellula ne esprimono la sintesi. In generale il codice genetico specifica 20 amminoacidi standard, ma in alcuni organismi possono essere inclusi amminoacidi non-standard come la selenocisteina e —in alcuni archaea— lapirrolisina. La sequenza amminoacidica determina a sua volta il ripiegamento della proteina in una specifica struttura tridimensionale che ne conferisce la specifica attività. Spesso alcuni residui amminoacidici di una proteina vengono modificati, subito dopo o già durante la sintesi, con modifiche chimiche post traduzionali. Tali modifiche alterano le proprietà chimico-fisiche, di ripiegamento, stabilità e attività delle proteine, variandone la funzione. Talvolta le proteine legano dei gruppi non-peptidici detti gruppi prostetici o cofattori, in grado di modificarne ulteriormente le proprietà. Le proteine per svolgere particolari funzioni possono anche associarsi in complessi stabili con altre proteine.
Le proteine sono necessarie nella dieta degli animali, in quanto gli animali non possono sintetizzare tutti gli amminoacidi di cui necessitano e devono ottenere alcuni di essi (i cosiddetti amminoacidi essenziali) dal cibo. Attraverso il processo di digestione, gli animali spezzano le proteine ingerite in amminoacidi liberi, che sono successivamente impiegati nella creazione di nuove proteine strutturali, enzimi, ormoni, o come fonti di energia mediante lagluconeogenesi.
Le proteine possono essere purificate separandole dagli altri componenti cellulari utilizzando tecniche diverse, tra cui ultracentrifugazioneprecipitazioneelettroforesi ecromatografia; l'avvento dell'ingegneria genetica ha reso possibili molti metodi che facilitano la purificazione proteica. I metodi comunemente usati per studiare la struttura e la funzione delle proteine includono l'immunoistochimica, la mutagenesi sito specifica, la risonanza magnetica nucleare e la spettrometria di massa.
Le proteine hanno una struttura tridimensionale molto complessa a cui è associata sempre una funzione biologica. Da questa considerazione deriva uno dei dogmi fondamentali della biologia: "Struttura <--> Funzione", nel senso che ad ogni diversa organizzazione strutturale posseduta da una proteina (detta proteina nativa) è associata una specifica funzione biochimica.
Da questo punto di vista le proteine possono essere classificate in due grandi famiglie: le proteine globulari e le proteine a struttura estesa o fibrosa. Queste due organizzazioni riflettono le due grosse separazioni funzionali che le contraddistinguono:
  • Le proteine estese o fibrose svolgono funzioni generalmente biomeccaniche, esse rientrano nella costituzione delle ossa, unghie, peli, dello strato corneo dell'epidermide, dei muscoli (actina e miosina), fornendo sostegno strutturale e opponendo una valida difesa contro il mondo esterno.
  • Al contrario, le proteine globulari sono coinvolte in specifiche e molteplici funzioni biologiche, spesso di fondamentale importanza per l'economia cellulare, sono proteine glienzimi, i pigmenti respiratori, molti ormoni, le tossine, e gli anticorpi, responsabili della difesa immunitaria.
La loro composizione in amminoacidi è variabile e sotto il controllo genetico per cui il loro peso molecolare può essere molto variabile e dipende dal numero e dal tipo di amminoacidi (monomeri) di cui è costituita la molecola (eteropolimero in cui il peso molecolare medio di un amminoacido è circa 115). Se la molecola è costituita da poche unità di amminoacidi (in genere non più di 15 ÷ 20) viene definita un oligopeptide. In genere, un oligopeptide non ha una ben definita conformazione in soluzione ma, essendo piuttosto flessibile, la cambia continuamente. Un polimero più lungo si dice polipeptide. Uno o più polipeptidi costituiscono una proteina.
Una proteina nella sua organizzazione nativa, e quindi funzionalmente attiva, può esistere solo in soluzioni saline diluite (molto simili, per composizione, a quelle esistenti nei sistemi acquosi cellulari). La sua struttura dipende esclusivamente dalle caratteristiche chimico-fisiche della soluzione acquosa in cui si trova (pH, presenza di ioni salini, temperatura, pressione, presenza di composti organici come ureaalcoli, ecc.). Il variare di questi parametri può determinare delle modifiche strutturali che possono alterare le proprietà funzionali, fino ad annullarle (proteina denaturata).
La formazione di copie duplicate di geni e l'alterazione della funzione di una proteina nel corso dell'evoluzione hanno portato alla formazione delle circa 500 famiglie proteiche identificate. All'interno di una famiglia sebbene ciascuna proteina svolga una funzione leggermente diversa dall'altra, la sequenza di amminoacidi in particolare presso i siti catalitici e in regioni conservate è quasi identica. Non è tuttavia una legge che vale per tutte le proteine di una famiglia, esistono infatti alcune proteine dalla sequenza amminoacidica molto diversa e tuttavia dalla conformazione tridimensionale molto simile. Si può quindi affermare che nel corso dell'evoluzione all'interno di una famiglia proteica si è conservata più la conformazione tridimensionale che non la sequenza degli amminoacidi. Generalmente quando almeno un quarto della sequenza amminoacidica di due proteine corrisponde, esse hanno la stessa struttura generale. Due proteine diverse appartenenti ad una stessa famiglia e dalla funzione simile sono dette paraloghe, mentre la stessa proteina in due organismi diversi (per esempio uomo e topo) è detta ortologa. La parentela tra due proteine è generalmente accettata quando almeno il 30% degli amminoacidi corrispondono, ma per verificarla è possibile ricorrere ai cosiddetti fingerprint, cioè brevi sequenze di amminoacidi comuni in quasi tutte le proteine di una data famiglia. Alcune proteine si sono formate per rimescolamento dei domini proteici o per la loro duplicazione all'interno della stessa proteina a causa di unioni accidentali di DNA codificante; certi domini sono particolarmente diffusi e sono perciò chiamati moduli proteici. Questi domini hanno la caratteristica di avere gli N-terminali e C-terminali ai poli opposti della proteina, così che l'aggregazione ad altri domini e ad altre proteine per formare strutture più grandi è favorita rispetto a quanto accadrebbe se fossero entrambi verso lo stesso polo della proteina; un esempio è il modulo 1 della fibronectina. In tal caso i domini che assumono una conformazione simile ad una spina della corrente sono inseriti nelle anse proteiche di alcune proteine, per esempio il modulo kringle nell'urochinasi o il dominio SH2. Alcuni di questi domini non si ritrovano solo tra proteine paraloghe ma anche ortologhe, per esempio il dominio SH2 mostra una diffusione molto simile sia nel verme che nella mosca, eppure è ben poco frequente nei vegetali. Vi sono invece dei domini comuni a solo certe categorie di organismi come l'MHC, il complesso maggiore di istocompatibilità (major histocompatibility complex), presente nell'uomo ma assente negli insetti e nei vegetali, tuttavia questi costituiscono soltanto il 7% del totale. Si è osservato inoltre che, malgrado alcuni organismi viventi apparentemente semplici come la pianta Arabidopsis thaliana posseggano più geni di un essere umano, tendenzialmente le proteine umane sono formate da un numero maggiore di domini e quindi sono più complesse rispetto alle ortologhe in altri organismi.
La classificazione può essere dunque fatta in base alla composizione chimica, alla configurazione molecolare o alla solubilità. Si distinguono così proteine semplici (costituite da soli amminoacidi) e proteine coniugate (costituite da una proteina semplice e da un gruppo prostetico di natura non proteica).
Tra le proteine semplici:
Tra le proteine coniugate (costituite almeno da apoproteina+gruppo prostetico):
Un'ulteriore classificazione delle proteine è quella che le distingue in base alla loro funzione.
  • Le proteine strutturali sono componenti delle strutture permanenti dell'organismo ed hanno principalmente una funzione meccanica. Due esempi sono il collagene e l'elastina, presenti nella matrice dei tessuti connettivi.
  • Le proteine di trasporto si legano (in genere con legami deboli) a sostanze poco (o comunque non abbastanza) idrosolubili e ne consentono il trasporto nei liquidi corporei. Comprendono ad esempio le proteine del sangue che trasportano i lipidi e il ferro, nonché l'emoglobina che trasporta l'ossigeno. Molto importanti sono anche le proteine di trasporto delle membrane cellulari.
  • Gli enzimi sono proteine catalitiche. Essi accelerano enormemente la velocità di specifiche reazioni chimiche, determinando quali, tra le pressoché infinite reazioni che potrebbero avvenire tra le sostanze presenti, avvengono realmente a velocità apprezzabile. Di fatto, ogni molecola appena un po' complessa presente in un essere vivente è prodotta da enzimi.
Tra le altre funzioni delle proteine rientrano la regolazione dell'espressione dei geni, la duplicazionetrascrizione e traduzione del DNA, la regolazione delle reazioni metaboliche, la generazione e la ricezione degli impulsi nervosi. Molte tossine e molti allergeni sono anch'essi proteine.
Le proprietà delle proteine si ricollegano a quelle dei loro costituenti, gli amminoacidi: sono elettroliti anfoteri, possono essere sottoposte ad elettroforesi, sono otticamente attive(levogire) e presentano il fenomeno di Tyndall.
Il punto isoelettrico (o PI) di una proteina è rappresentato da quella concentrazione di idrogenioni del mezzo, che si comporta in modo da far assumere al protide una forma dianfoione.
Per ottenere il peso molecolare (o PM) delle proteine si deve far ricorso a tecniche e metodologie di non sempre facile attuazione. Tra le tante, quella che fornisce i risultati più precisi è senza dubbio la spettrometria di massa.
WIKIPEDIA

Nessun commento:

Posta un commento