Per mutazione genetica si intende ogni modifica stabile ed ereditabile nella sequenza nucleotidica di un genoma o più generalmente di materiale genetico (sia DNA che RNA) dovuta ad agenti esterni o al caso, ma non alla ricombinazione genetica.[1] Una mutazione modifica quindi il genotipodi un individuo e può eventualmente modificarne il fenotipo a seconda delle sue caratteristiche e delle interazioni con l'ambiente.
Le mutazioni sono gli elementi di base grazie ai quali possono svolgersi i processi evolutivi. Le mutazioni determinano infatti la cosiddetta variabilità genetica, ovvero la condizione per cui gli organismi differiscono tra loro per uno o più caratteri. Su questa variabilità, tramite la ricombinazione genetica, opera la selezione naturale, la quale promuove le mutazioni favorevoli a scapito di quelle sfavorevoli o addirittura letali. Essendo una parte delle mutazioni non favorevoli, gli organismi hanno sviluppato diversi meccanismi per la riparazione del DNA dai vari danni che può subire, riducendo in questo modo il tasso di mutazione.
Le mutazioni vengono distinte dai genetisti in base alla loro scala di azione: l'alterazione può riguardare un singolo gene, porzioni del genoma o l'intero corredo cromosomico.
Se le mutazioni avvengono in una cellula somatica queste, assieme ai relativi effetti, saranno presenti in tutte le cellule da essa derivate per mitosi; alcune di queste mutazioni possono rendere le cellule maligne e provocare il cancro,e sono responsabili di alcune malformazioni congenite. Se le mutazioni sono presenti nelle cellule delle linee germinali o nei gameti sono ereditate dalle generazioni successive e possono eventualmente provocare malattie genetiche ereditarie.
Le mutazioni spontanee sono mutazioni provocate da fattori chimici endogeni e da errori nei processi che si attuano sul materiale genetico; la definizione di mutazione spontanea è di mutazione che avviene in assenza di agenti mutageni noti. Non sono molto frequenti, ma sono comunque inevitabili vista la intrinseca imperfezione di ogni meccanismo molecolare. Gli errori possono essere dovuti a:
- Tautomeria - una base è modificata per lo spostamento di un atomo di idrogeno.
- Deaminazione - reazione che trasforma una base azotata in una diversa; ad esempio provoca la transizione C → U (che può essere riparata); c'è anche la deaminazione spontanea della 5-metilcitosina in T e la deaminazione che determina A → HX (adenina → ipoxantina).
- Depurinazione - idrolisi del legame glicosidico e formazione di un nucleotide privo di base (di solito G o A).
- Danni ossidativi - dovuti alla formazione spontanea nella cellula di specie con atomi di ossigeno molto reattive, in grado di attaccare il DNA e causare danni al singolo o al doppio filamento e danneggiamento delle basi azotate.
- Errori nei processi di replicazione, della ricombinazione e della riparazione del DNA. Ad esempio può essere dovuta alla DNA polimerasi che aggiunge nucleotidi non corretti; ciò può generare una trasversione se c'è lo scambio di una purina con una pirimidina o viceversa; unatransizione se c'è lo scambio di una purina con un'altra purina oppure di una pirimidina con un'altra pirimidina.
Le mutazioni indotte sono invece prodotte dall'azione di particolari agenti fisici o chimici detti appunto agenti mutageni. È detto mutagenesi il processo che determina una mutazione indotta e mutagenizzato l'organismo in cui è stata prodotta. Si distinguono i danni per mutazioni indotte in:
- Sostituzione delle basi con molecole con struttura analoga a quelle comunemente presenti nel DNA ma che formano appaiamenti diversi e quindi errati.
- Aggiunta di gruppi sostituenti alle basi azotate: anche in questo caso generando molecole con capacità di appaiamento non corrette.
- Danneggiamento delle basi azotate: rompendo legami o aggiungendone di nuovi rispetto alla condizione normale.
- Inserzione o delezioni di basi.
I mutageni fisici sono soprattutto radiazioni ionizzanti (raggi X, raggi gamma) e non ionizzanti (raggi UV); gli agenti chimici sono molto numerosi e appartengono a diverse classi di composti. Oltre che per la natura i mutageni differiscono anche per spettro mutazionale, ovvero per il tipo (o i tipi) di mutazione che possono provocare. Spesso una stessa conseguenza può essere causata da mutageni diversi (anche per natura), anche se generalmente i meccanismi con cui essi hanno agito sono profondamente diversi.
Un'importante differenza tra mutageni fisici e chimici è che i primi agiscono indipendentemente dall'organismo; i mutageni chimici invece possono avere effetti diversi in funzione del sistema biologico. Mentre una radiazione, infatti, colpisce direttamente il materiale genetico, un composto chimico può interagire con altre molecole (enzimi, metaboliti, specie reattive...) presenti nella cellula che ne possono variare le caratteristiche.
Sono le mutazioni che alterano un singolo gene e dunque le più "piccole" che si possono avere. In quanto tali non sono visibili attraverso analisi al microscopio (tranne alcuni casi estremi), ma possono essere riscontrate solo tramite analisi genetiche. Le mutazioni geniche portano alla formazione di nuove forme geniche, ovvero di nuovi alleli, detti appunto alleli mutanti. In quanto tali questi sono rari nella popolazione e si differenziano dagli alleli più diffusi detti invece tipi selvatici. Bisogna però far distinzione anche tra alleli mutanti e morfi. I morfi sono infatti due o più alleli di uno stesso gene con frequenza superiore all'1% (polimorfismo). Alla luce di questo ne deriva che il concetto di mutazione non è assoluto: un gene potrà subire una mutazione; se l'allele mutante però troverà le condizioni per diffondersi nella popolazione e superare la frequenza dell'1% non si parlerà più di mutazione ma di morfo.
Possono essere distinte in tre categorie: mutazioni puntiformi, mutazioni dinamiche e riarrangiamenti genici strutturali.
Una mutazione puntiforme è una variazione di sequenza del DNA che interessa uno o pochi nucleotidi, ma è possibile considerare "puntiformi" anche mutazioni di fino a 50 nucleotidi. Molte mutazioni puntiformi sono probabilmente senza effetto, in tal caso si dice che sono neutre, infatti gran parte del DNA in un genoma eucariotico non codifica prodotti proteici ed è incerto se il cambiamento di una singola base nucleotidica in questa parte silente del DNA possa influire sulla salute di un organismo. Una singola mutazione puntiforme può però avere un notevole impatto sul fenotipo come accade ad esempio nell'anemia falciforme.
Le mutazioni per sostituzione di basi determinano lo scambio di un nucleotide con un altro. Sono definite transizioni qualora vi sia un scambio di una purina con altra purina (A > G) o di una pirimidina con un'altra pirimidina (C > T); si dicono invece transversioni quando lo scambio è di una purina con una pirimidina o viceversa (C/T > A/G). In genere le transizioni sono più frequenti delle transversioni.
Le mutazioni puntiformi possono essere di sei tipologie: silenti, missenso, delezioni o inserzioni in frame, inserzioni nonsenso, mutazioni frame-shift o mutazioni di splicing.
- Le mutazioni silenti o sinonime si verificano quando la sostituzione di una base azotata in una sequenza di DNA non determina variazione della frequenza amminoacidica della proteina interessata. Se per esempio la tripletta TTT muta in TTC, si avrà una transizione (T > C) in terza posizione della tripletta, ma l'amminoacido codificato a partire dalla tripletta di mRNA corrispondente (UUC) sarà sempre fenilalanina a causa della ridondanza del nostro codice genetico che è degenerato. Le mutazioni silenti sono in prevalenza neutre poiché l'amminoacido non cambia e di conseguenza non cambia neppure la funzionalità della proteina codificata all'interno della quale si trova la tripletta mutata.[2] Molte delle mutazioni responsabili di un alterato processo di splicing si verificano nelle brevi sequenze ESE (Exon Splicing Enhancer) di alcuni esoni, che sono fondamentali per uno splicing corretto, dal momento che vi si legano alcune proteine coinvolte nella regolazione di questo processo. Quando si verificano mutazioni in queste sequenze può verificarsi l'inclusione di introni nell'mRNA maturo, il quale, se venisse codificato, porterebbe a proteine anomale. Mutazioni silenti alle sequenze ESS (Exonic Splicing Silencer) coinvolte anch'esse nel meccanismo di splicing del trascritto primario, possono invece portare all'esclusione di un esone dall'mRNA maturo e di conseguenza alla codifica di proteine tronche da parte dei ribosomi.
- Le mutazioni missenso si verificano quando all'interno di una sequenza di DNA viene sostituita una base azotata in modo tale che la sequenza amminoacidica sia modificata. Se per esempio la tripletta TTT muta in TCT con una transizione della base in seconda posizione (T > C), l'amminoacido codificato non sarà più fenilalanina ma serina. Questo tipo di mutazioni può essere neutra e non determinare nessun fenotipo specifico rappresentando semplicemente un polimorfismo a singolo nucleotide (SNP) o una variante privata, ma può anche dare origine a patologie gravi come l'anemia falciforme. Generalmente si può ritenere neutra una mutazione missenso qualora l'amminoacido sostituito sia presente senza mostrare un fenotipo patologico in un determinato numero di individui sotto forma di polimorfismo a singolo nucleotide o di variante privata, oppure qualora l'amminoacido codificato abbia proprietà simili a quello originario (per esempio una sostituzione di acido glutammico con acido aspartico). La mutazione può però dare origine a condizioni patologiche quando l'amminoacido codificato dalla nuova tripletta presenta proprietà molto diverse dal precedente (per esempio la sostituzione di una valina con acido aspartico), qualora non sia stata riscontrata in casi precedenti o in ambito parentale oppure quando si verifica in una regione altamente conservata di una proteina. Spesso infatti anche una singola mutazione in una regione altamente conservata di una proteina le perdere funzionalità.
- Le delezioni in frame e le inserzioni in frame determinano rispettivamente l'eliminazione di una tripletta o di un numero di nucleotidi divisibili per 3 oppure l'inserzione di una tripletta o di un numero di nucleotidi divisibili per 3. Sono "in frame" poiché non spostano la cornice di lettura a livello ribosomiale, questo infatti comporterebbe il pressoché totale cambiamento della sequenza amminoacidica di una proteina. Questo tipo di mutazioni determinano l'eliminazione o l'aggiunta di amminoacidi nella proteina codificata a partire dall'mRNA maturo che le contiene. Le conseguenze di queste mutazioni sono molto varie.
- Le mutazioni nonsenso si verificano quando una mutazione ad un nucleotide di una tripletta determina la trasformazione di un codone codificante un amminoacido in un codone di stop. Per esempio la tripletta TGC codificante cisteina è sostituita da TGA, che verrà trascritto nell'mRNA come UGA, uno dei tre codoni di stop. La conseguenza è la proteina codificata non viene esportata oppure, se codificata, è tronca, poiché la traduzione si conclude al codone di stop ignorandone le triplette a valle. La conseguenza di questa mutazione è una proteina tronca non funzionale o nociva. Se però il codone di stop si trova ad almeno 50 nucleotidi dalla sequenza di splicing più vicina nell'mRNA, la cellula attiva un meccanismo di protezione noto come NMD (Nonsense Mediated Decay) che degrada l'mRNA mutato. In alternativa, è possibile che si attivi un altro meccanismo noto come NAS (Nonsense-associated Alterated Splicing) che esclude l'esone contenente la tripletta mutata in codone di stop, permettendo l'associazione degli altri esoni in una proteina più corta.
- Le mutazioni frame-shift sono dovute a delezione o inserzioni di un numero di nucleotidi non divisibile per 3, questo comporta lo spostamento della cornice di lettura a valle della mutazione e quindi la codificazione di una sequenza amminoacidica non corrispondente a quella del trascritto originario.[3] La conseguenza è la produzione di proteine anomale che hanno solo porzioni di sequenza corrispondenti all'originaria o la mancata esportazione o traduzione dell'mRNA mutato.
- Le mutazioni di splicing sono un insieme di quattro tipi di mutazioni che coinvolgono sequenze importanti per lo splicing del pre-mRNA. Una prima tipologia coinvolge il sito donatore di splicing (GT) o il sito accettore (di norma AG). Mutazioni in questi due marcatori iniziale e finale di una sequenza intronica possono portare all'inclusione dell'introne nel trascritto maturo oppure ad uno splicing non corretto. Una seconda tipologia coinvolge brevi sequenze consenso a monte e a valle del sito donatore e del sito accettore, oppure una sequenza consenso del sito di biforcazione (branch-site). Una terza tipologia coinvolge mutazioni in una sequenza ESE o ESS e può essere ascritta anche alle mutazioni silenti. Infine un'ultima tipologia coinvolge mutazioni che creano nuove sequenze consenso all'interno di un introne, e in tal caso questo o sue parti possono venire incluse nel trascritto, oppure in un esone, in tal caso si verifica l'exon skipping.
Mutazioni puntiformi possono anche verificarsi all'interno della regione regolatrice di un gene. Ciò può determinare conseguenze molto variabili che vanno da nessun effetto fenotipico a cambiamenti dell'espressione genica che danno origine a gravi patologie.
Le mutazioni dinamiche sono dovute alla ripetizione di brevi triplette nucleotidiche all'interno di una regione codificante (in questo caso la tripletta più frequente è CAG che codifica la glutammina) o non-codificante di un gene. La mutazione, che si origina nel corso della replicazione del DNA, provoca una variazione nel numero di queste sequenze ripetute; il nuovo filamento di DNA potrà presentarne in eccesso o in difetto. Il fenomeno che causa la mutazione è detto slittamento della replicazione (replication slippage) ed è dovuto al cattivo appaiamento dei due filamenti complementari. Malattie genetiche associate a questo tipo di mutazione sono la Corea di Huntington e la sindrome dell'X fragile.
Si parla di mutazioni cromosomiche o anomalie cromosomiche quando è la struttura di uno o più cromosomi ad essere alterata. Le mutazioni cromosomiche possono essere di sei tipi: delezioni o duplicazioni, inversioni, traslocazioni, conversioni geniche, trasposizioni e cromosomi ad anello.
- Le delezioni e duplicazioni sono dovute ad errori nel processo della ricombinazione omologa, detta anche crossing-over, che si verifica nella meiosi. A causa della presenza di geni che hanno un alto grado di omologia, di pseudogeni o di sequenze ripetute si possono verificare errori nell'appaiamento dei cromosomi, tali che i frammenti di DNA scambiati tra i due cromosomi non sono eguali, per cui si verifica una delezione su uno e una duplicazione sull'altro. Può capitare che durante una ricombinazione non-omologa dovuta ad un riarrangiamento non corretto alcuni geni all'interno di blocchi di DNA siano collocati presso un'area a forte presenza eterocromatica. In questo caso è possibile che questi geni vengano inattivati mediante il fenomeno dell'effetto di posizione. Disturbi associati a questa anomalia sono la sindrome di Wolf-Hirschhorn, che è causata dalla perdita di parte del braccio corto del cromosoma 4, e la sindrome di Jacobsen, originata dalla delezione della parte terminale del cromosoma 11. Alcuni disturbi conosciuti dovuti a duplicazione sono la sindrome di Bloom e la sindrome di Rett.
- La traslocazione avviene quando una regione di un cromosoma viene trasferita in un'altra posizione dello stesso cromosoma o di un altro; ci sono due tipi principali di traslocazioni: la traslocazione reciproca e la traslocazione robertsoniana.
- L'inversione è una mutazione dovuta all'inversione dell'orientamento di una regione di un cromosoma che causa un'inversione dell'ordine dei geni. Sono dovute alla forte presenza di sequenze duplicate o invertite presso il gene interessato. L'omologia delle due sequenze determina il ripiegamento del DNA e il loro appaiamento. La cellula interviene effettuando una ricombinazione non omologa che determina l'inversione della regione compresa tra le due ripetizioni.
- La conversione genica è una mutazione in cui si hanno trasferimenti non reciproci di sequenze di DNA tra geni o alleli, nel primo caso la conversione è interallelica nel secondo caso si dice che è interlocus. Delle due sequenze, quella che rimane invariata è detta donatore, quella che viene modificata è detta accettore.
- La trasposizione si verifica quando un elemento trasponibile come LINE o SINE si integra nel genoma dopo essere stata retrotrascritta. Tale mutazione può non avere nessun effetto fenotipico se interessa regioni ripetute, ma può dare origine a patologie quando la trasposizione avviene all'interno di un gene attivamente trascritto.
- L'anello si verifica quando le due estremità di un cromosoma si appaiano tra loro, formando un anello. Quest'anomalia può comportare, o meno, perdita di materiale genetico.
Si parla di mutazione genomiche o anomalie cariotipiche quando un organismo presenta dei cromosomi in più o in meno rispetto al normale.
Se sono presenti interi corredi cromosomici in più o in meno si parla di euploidia aberrante; se invece è solo una parte del corredo in eccesso o in difetto l'anomalia è chiamata aneuploidia.
Se sono presenti interi corredi cromosomici in più o in meno si parla di euploidia aberrante; se invece è solo una parte del corredo in eccesso o in difetto l'anomalia è chiamata aneuploidia.
Nell'uomo e, in generale, in tutti gli organismi diploidi, che hanno dunque coppie di cromosomi omologhi, le forme di aneuploidia più frequenti sono la mancanza di un cromosoma da una coppia (monosomia) o la presenza di un cromosoma in più in una coppia (trisomia) . Più raro è il caso di perdita di una coppia intera (nullisomia).
Un esempio degli effetti di un'anomalia di questo tipo è la sindrome di Down, chiamata anche trisomia 21; gli individui affetti da questa sindrome hanno tre copie del cromosoma 21, invece che due. La sindrome di Turner è invece un esempio di monosomia; gli individui nati con questa anomalia possiedono un solo cromosoma sessuale, quello femminile X. Tra gli organismi aploidi i casi più diffusi di aneuploidia consistono nella presenza di un cromosoma soprannumerario (disomia).
Anche per questa categoria di mutazioni le possibili conseguenze sull'organismo sono variabili. In generale ci sarà effetto ogni volta che, nella modificazione del cromosoma o del genoma, si altera anche la sequenza o il numero di uno o più geni. A differenza delle mutazioni geniche in questo caso gli effetti saranno sempre negativi.
- Per tutte le mutazioni cromosomiche è necessaria la rottura del doppio filamento in almeno un punto per permettere il successivo riarrangiamento: se la rottura avviene all'interno di un gene al termine del processo la sua sequenza sarà mutata. Ad esempio, in un' inversione, se le fratture sono avvenute in sequenze codificanti, a seguito del diverso orientamento del frammento reinserito, i geni alle estremità avranno parte della sequenza giusta e parte proveniente dall'altra estremità del frammento, quindi sbagliata (i geni interni al frammento invece non saranno mutati ma solo invertiti nell'ordine). La situazione è analoga per le traslocazioni. Le delezioni e le duplicazioni invece avranno ulteriori conseguenze, essendo riarrangiamenti che alterano non la disposizione ma la quantità di materiale genetico. La delezione avrà effetti negativi proporzionali alla dimensione del frammento deleto. La duplicazione aumenta il numero di copie dei geni contenuti nel frammento duplicato: anche questo però ha conseguenze dannose perché determina uno squilibrio genico.
- In modo analogo nelle mutazioni del cariotipo si ha un aumento o una diminuzione delle dimensioni del genoma cellulare. L' auploidia aberrante è rara ma comunque letale negli animali(tranne rare eccezioni), può essere anche determinante invece nelle piante. Recenti studi invece hanno ormai dimostrato che l' aneuploidia è una delle dirette cause di molti tumori (e non una conseguenza come si era anche pensato)[4].
WIKIPEDIA
Nessun commento:
Posta un commento